Source apportionment of airborne particles in the Auckland region

Photo from MetVuw: Henderson Valley by Diarmuid Kingsleigh-Smith, 07:25 18 May 2007

Perry Davy Bill Trompetter Andreas Markwitz

Outline

- 1. Introduction
- 2. Elements and their concentrations
- 3. Data analysis and quality assurance
- 4. Source apportionment
- 5. Identification of predominant sources
- 6. Temporal and seasonal variations
- 7. High pollution days
- 8. 'One off' local sources
- 9. Source strength and wind direction
- **10. Intersite comparison of sources**
- **11. Regional sources**
- 12. Receptor modelling versus emissions inventory
- 13. Some key conclusions

Introduction – Sites and Samples

5 sites and 10 samples sets of particulate matter from across the Auckland region:

- Takapuna 110 PM₁₀
- Khyber Pass, Newmarket 115 PM_{2.5} and PM₁₀
- Queen St, Auckland 110 $PM_{2.5}$ and 305 PM_{10}
- Gavin St, Penrose 90 PM_{2.5} and 75 PM₁₀
- Kowhai Intermediate, Kingsland 237 speciated PM_{2.5}, 114 PM_{2.5} and 115 PM₁₀

This is the most extensive study of its kind to date in NZ

Introduction - Some definitions:

- APM air particulate matter
- Biomass burning combustion of plant material, wood
- Marine aerosol seasalt
- Crustal matter soil
- Secondary particles –formed in the atmosphere from precursor particles, gases or liquid droplets as a result of atmospheric chemistry e.g. secondary sulphate particles from SO₂ gas
- Coarse and fine particles refers to PM_{10-2.5} and PM_{2.5} respectively

Elements and their concentrations

Analysis of $PM_{2.5}$ and PM_{10} datasets

Typical elements and their LODs

Element	Method	Limits of detection
Н	PESA	500 ppm – 1000 ppm
Na	PIGE	500 ppm - 1000 ppm
Mg	PIXE K line	10 ppm - 100 ppm
AlSr	PIXE K line	10 ppm - 100 ppm
SrU	PIXE L line	50 ppm - 300 ppm
SmU	PIXE M line	100 ppm - 500 ppm

C, N, O measured by RBS for QA/QC

BC measured by light reflectance

Quality assurance of datasets:

- QA involves removal of samples with damaged filters, no reported / no gravimetric mass
- Time series plots of analytes
- Scatterplots of one analyte vs another to examine relationships
- Mass reconstruction and comparison with gravimetric mass

Source Apportionment

- Three main methods of source apportionment: emissions inventories, dispersion modelling and receptor modelling
- Emissions inventories and dispersion modelling use source activity to predict ambient contributions whereas receptor modelling uses ambient concentrations to infer source contributions
- A key advantage of receptor modelling is the ability to determine mass contributions to APM from sources that are difficult to quantify source activity
- A combination of approaches may be most effective in providing the 'weight of evidence' and utility for air quality management and policy formulation

General conceptual receptor model for Auckland

Local emission sources:

- Domestic activities likely to be dominated by biomass burning
- Motor vehicles all roads in area act as line sources and roads with higher density traffic will dominate PM profile
- Local wind blown soil or road dust sources
- Industrial emissions

Longer range sources:

- Marine aerosol (seasalt)
- Secondary sources (sulphate, nitrate, SOA)
- Potential for industrial emissions?
- Australian dust, fires
- Global background
- 'One-off' emissions sources:
- Fireworks displays
- Short-term road works or construction activities
- Others?

Source apportionment of PM_{2.5} and PM₁₀ mass – this is what we do when we assemble the data

- Principal components analysis used to estimate number of factors (sources) that may be present
- Further factor analysis and source mass contributions by positive matrix factorisation
- Process is reiterative to achieve a meaningful and defensible outcome
- Solutions must be backed up by analysis of meteorological factors and continuous PM₁₀ monitoring results

Receptor modelling...it works! Intrasite comparison – Kingsland PM_{2.5} sources

Intrasite comparison – Kingsland PM_{2.5} mass

Source profiles

- Source profiles are derived from the statistical associations between constituent elements for ambient APM or from direct measurement of emission sources
- In theory ambient profiles should resemble measured source profiles, but we need to keep in mind atmospheric chemistry (e.g. secondary particulate matter sources)

So what do some of these particles look like?

Combustion

Combustion – wood burner

Crustal matter

Sea salt

Glass shard

Temporal variation – Kingsland PM_{2.5} (2004 - 2006)

Temporal variation – Takapuna PM₁₀ (2006)

Motor vehicles					
(m ³)					
1 30					
id 10					
Wassew 0	ւ հարոր հերանակությունը է հային նեղերերերին, դերանինների հետ, ու առաջան ապատուստ				
De	sc-05 Jan-06 Feb-06 Mar-06 Apr-06 May-06 Jun-06 Jul-06 Aug-06 Sep-06 Oct-06 Nov-06 Dec-06				

40	Sulphate
(em,6 m) 30	
uoindi 20	
U 10	
ëW 0 De	ulluting in the second se

'One-off' events - High potassium concentrations as measured at Kingsland (peaks also for Al, Mg, Cu, S)

Source strength and wind direction

- Analysis of source contribution vs wind direction
- Probability that a given factor contribution from a given wind direction will exceed a predetermined threshold criterion (upper 25 % of contribution)

$$CPF_{\Delta\theta} = \frac{m_{\Delta\theta}}{n_{\Delta\theta}}$$

 $m_{\Delta\theta}$: number of occurrence from wind sector $\Delta\theta$ that are upper 25 % of source contributions

 $n_{\Delta\theta}$: total number of occurrence from the same wind sector

 Sources are likely to be located in the directions that have high CPF values

Directionality of motor vehicle emission source at Kowhai, Kingsland

What is the relationship between monitoring sites?

- Intersite correlations better for PM₁₀ than PM_{2.5}
 - This suggests different drivers (sources) for PM_{2.5} and PM_{10-2.5}

Intersite comparison contd – PM₁₀ marine aerosol

- Marine aerosol source well correlated across all sites \Rightarrow regional source
- Marine aerosol is primarily a PM_{10-2.5} particle source which may explain the better correlation for PM₁₀ mass

Intersite comparison contd – PM_{2.5} motor vehicles

- Motor vehicle sources some are better correlated than others \Rightarrow local source

Intersite comparison contd – PM_{2.5} and PM₁₀ biomass burning

 Biomass burning source better correlated (PM_{2.5}) across all sites but still a local source – the common denominator is meteorology, with cold calm conditions leading to peak biomass burning mass contributions to ambient APM

Regional sources – e.g. secondary sulphate

- Secondary sulphate formed by gas-to-particle conversion process
- Precursors can be SO₂ gas or dimethyl sulphides emitted by marine organisms (open ocean)
- Two methods of determining sulphate sources
 - CPF analysis of all samples
 - Back trajectory analysis of regional sulphate event

Regional sulphate 'event' – 28 September 2006

Receptor modelling results for sulphate

Air mass back-trajectory

And another regional source – marine aerosol

- Marine aerosol is generated by wind and wave action across the oceans
- The finer fraction of marine aerosol (PM_{2.5}) can travel long distances
- CPF analysis of marine aerosol source suggests that PM_{2.5} fraction is largely generated in the Tasman and Southern Ocean
- CPF for PM₁₀ suggests that coarse marine aerosol particles are generated more locally (Waitemata Harbour, Hauraki Gulf, Manukau Harbour and west coast surf)

Comparison with emissions inventory

- Receptor models provide an estimate of mass contributions from all sources based on measured concentrations at a particular site
- Emissions inventories provide an estimate of average emissions from specified sources on an annual or daily basis (i.e. average winter day or summer day) based on activity and emissions factors

Summer PM₁₀

Queen Street

Emissions Inventory

Summary of Auckland receptor modeling

- IBA provides an effective method of determining elemental concentrations for use in receptor modeling studies
- Receptor modeling has provided a per sample analysis of contributing sources to APM in Auckland allowing the investigation of:
 - Regional, local and one-off sources
 - Daily, seasonal or annual variations
- Marine aerosol is an important contributor to both $PM_{2.5}$ and PM_{10} during summer and PM_{10} all year
- Biomass burning is largely responsible for winter $\text{PM}_{\rm 2.5}$ and $\text{PM}_{\rm 10}$ peaks
- Motor vehicle emission sources can also contribute significantly depending on location
- The relative contributions of sources to peak PM events can form the basis of evaluating emissions reduction strategies for locations where National Environmental Standards or Regional Air Quality Targets are exceeded